Showing posts with label shows. Show all posts
Showing posts with label shows. Show all posts
ScienceDaily (Dec. 1, 2011) — Traditional media, such as newspapers and television news, require readers and viewers to intentionally seek out news by picking up a newspaper or turning on the television. The Internet and new technologies now are changing the way readers consume online news. New research from the University of Missouri shows that Internet users often do not make the conscious decision to read news online, but they come across news when they are searching for other information or doing non-news related activities online, such as shopping or visiting social networking sites.

Borchuluun Yadamsuren, a post-doctoral fellow at the Reynolds Journalism Institute (RJI) in the University of Missouri School of Journalism, found a shift in the way people have begun to perceive online news. She says that while some people still have the perception of news as tied to traditional media, others now hold a much broader perception of news that goes beyond what is reported by professional journalists. Yadamsuren attributes this to the wide array of information available online.

"Incidental exposure to online news is becoming a major way for many people to receive information about news events," Yadamsuren said. "However, many people don't realize how their news reading behavior is shifting to more serendipitous discovery."

Using mixed method approach, Yadamsuren surveyed nearly 150 respondents with further interviews of 20 of those respondents to understand their incidental exposure to online news. She found that respondents experience incidental exposure to online news in three different contexts. The first group of respondents reported that they come across interesting news stories while they visit online news sites. Others report incidental exposure to online news in the context of non-news related activities such as checking email and visiting Facebook and other social networking sites. The third group of respondents reported that they stumble upon "unusual," "weird," "interesting," "bizarre," unexpected," "outrageous," or "off the wall" news stories while they are conducting their normal Internet searches.

Currently, Yadamsuren is studying the relationship between incidental exposure to online news and different demographic and technology-access related factors. Yadamsuren believes it is important for media organizations to place links to their news stories on different sites throughout the Internet to take advantage of serendipitious news consuming behavior to expand their readership.

Yadamsuren's study was presented at the Association for Education in Journalism and Mass Communication (AEJMC) 2011 and American Society for Information Science and Technology (ASIST) 2011 Annual Meetings. Her research was also published in Information Research. Her current research at RJI involves developing strategies for news organizations to engage younger generations with online news based on incidental exposure.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by University of Missouri-Columbia.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.


View the original article here

ScienceDaily (Oct. 27, 2011) — A new fourth-generation oncolytic virus designed to both kill cancer cells and inhibit blood-vessel growth has shown greater effectiveness than earlier versions when tested in animal models of human brain cancer.

Researchers at the Ohio State University Comprehensive Cancer Center -- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC -- James) are developing the oncolytic virus as a treatment for glioblastoma, the most common and deadly form of brain cancer (average survival: 15 months after diagnosis).

The new oncolytic virus, called 34.5ENVE, improved survival of mice with transplanted human glioblastoma tumors by 50 percent in a majority of cases compared with the previous-generation oncolytic virus.

The study was published online in the journal Molecular Therapy.

"These findings show the amazing therapeutic efficacy of this new oncolytic virus against four different glioblastoma models in animals," says cancer researcher Dr. Balveen Kaur, associate professor of neurological surgery, and a member of the OSUCCC -- James viral oncology research program.

The new oncolytic virus is engineered to replicate in cells that express the protein nestin. First identified as a marker for neuronal stem cells, nestin is also expressed in glioblastoma and other malignancies including gastrointestinal, pancreatic, prostate and breast cancer.

"We believe that nestin-driven oncolytic viruses will prove valuable for the treatment of many types of cancer," Kaur says.

The new oncolytic virus also carries a gene to inhibit tumor blood-vessel growth. That gene, called Vstat120, was added to increase its anti-tumor effectiveness and prolong the virus's presence within tumors.

In this study of eight animals with intracranial tumors, six lived longer than 80 days, and these were later found to be tumor free. By comparison, control mice survived a median of 20 days, and mice treated with a first-, a second-, and a third-generation oncolytic virus survived 33, 34 and 53 days, respectively.

"Magnetic resonance imaging and histological analyses revealed extensive tumor destruction in animals treated with 34.5 ENVE," says Kaur, who is also chief of Ohio State's Dardinger Laboratory of Neurosciences. "We hope that we can soon evaluate the safety of this virus in patients with cancer."

Funding from the National Institute for Neurological Disorders and Stroke, National Cancer Institute and National Research Foundation of Korea supported this research.

Other researchers involved in this study were Ji Young Yoo, Amy Haseley, Anna Bratasz, E. Antonio Chiocca, Jianying Zhang and Kimerly Powell of The Ohio State University.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Ohio State University Medical Center.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Ji Young Yoo, Amy Haseley, Anna Bratasz, E Antonio Chiocca, Jianying Zhang, Kimerly Powell, Balveen Kaur. Antitumor Efficacy of 34.5ENVE: A Transcriptionally Retargeted and “Vstat120”-expressing Oncolytic Virus. Molecular Therapy, 2011; DOI: 10.1038/mt.2011.208

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.


View the original article here

ScienceDaily (Oct. 27, 2011) — Using highly potent antibodies isolated from HIV-positive people, researchers have recently begun to identify ways to broadly neutralize the many possible subtypes of HIV. Now, a team led by biologists at the California Institute of Technology (Caltech) has built upon one of these naturally occurring antibodies to create a stronger version they believe is a better candidate for clinical applications.

Current advances in isolating antibodies from HIV-infected individuals have allowed for the discovery of a large number of new, broadly neutralizing anti-HIV antibodies directed against the host receptor (CD4) binding site -- a functional site on the surface of the virus that allows for cell entry and infection. Using a technique known as structure-based rational design, the team modified one already-known and particularly potent antibody -- NIH45-46 -- so that it can target the binding site in a different and more powerful way. A study outlining their process was published in the Oct. 27 issue of Science Express.

"NIH45-46 was already one of the most broad and potent of the known anti-HIV antibodies," says Pamela Bjorkman, Max Delbrück Professor of Biology at Caltech and senior author on the study. "Our new antibody is now arguably the best of the currently available, broadly neutralizing anti-HIV antibodies."

By conducting structural studies, the researchers were able to identify how NIH45-46 interacted with gp120 -- a protein on the surface of the virus that's required for the successful entry of HIV into cells -- to neutralize the virus. Using this information, they were able to create a new antibody (dubbed NIH45-46G54W) that is better able to grab onto and interfere with gp120. This improves the antibody's breadth -- or extent to which it effectively targets many subtypes of HIV -- and potency by an order of magnitude, according to Ron Diskin, a postdoctoral scholar in Bjorkman's lab at Caltech and the paper's lead author.

"Not only did we design an improved version of NIH45-46, our structural data are calling into question previous assumptions about how to make a vaccine in order to elicit such antibodies," says Diskin. "We hope that these observations will help to guide and improve future immunogen design."

By improving the efficacy of antibodies that can neutralize HIV, the researchers point to the possibility of clinical testing for NIH45-46G54W and other antibodies as therapeutic agents. It's also plausible that understanding effective neutralization by powerful antibodies may be useful in vaccine development.

"The results uncover the structural underpinnings of anti-HIV antibody breadth and potency, offer a new view of neutralization by CD4-binding site anti-HIV antibodies, and establish principles that may enable the creation of a new group of HIV therapeutics," says Bjorkman, who is also a Howard Hughes Medical Institute investigator.

Other Caltech authors on the study, "Increasing the Potency and Breadth of an HIV Antibody by Using Structure-Based Rational Design," include Paola M. Marcovecchio, Anthony P. West, Jr., Han Gao, and Priyanthi N.P. Gnanapragasm. Johannes Scheid, Florian Klein, Alexander Abadir, and Michel Nussenweig from Rockefeller University, and Michael Seaman from Beth Israel Deaconess Medical Center in Boston also contributed to the paper. The research was funded by the Bill & Melinda Gates Foundation, the National Institutes of Health, the Gordon and Betty Moore Foundation, and the German Research Foundation.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by California Institute of Technology. The original article was written by Katie Neith.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Ron Diskin, Johannes F. Scheid, Paola M. Marcovecchio, Anthony P. West, Jr., Florian Klein, Han Gao, Priyanthi N. P. Gnanapragasam, Alexander Abadir, Michael S. Seaman, Michel C. Nussenzweig, Pamela J. Bjorkman. Increasing the Potency and Breadth of an HIV Antibody by Using Structure-Based Rational Design. Science, Published online Oct. 27, 2011 DOI: 10.1126/science.1213782

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.


View the original article here