Showing posts with label collision. Show all posts
Showing posts with label collision. Show all posts
ScienceDaily (Oct. 27, 2011) — A new analysis of images from the Hubble Space Telescope combined with supercomputer simulations of galaxy collisions has cleared up years of confusion about the rate at which smaller galaxies merge to form bigger ones. This paper, led by Jennifer Lotz of Space Telescope Science Institute, is about to be published in The Astrophysical Journal.

Galaxies grow mostly by acquiring small amounts of matter from their surroundings. But occasionally galaxies merge with other galaxies large or small. Collisions between big galaxies can change rotating disk galaxies like the Milky Way into featureless elliptical galaxies, in which the stars are moving every which way.

In order to understand how galaxies have grown, it is essential to measure the rate at which galaxies merge. In the past, astronomers have used two principal techniques: counting the number of close pairs of galaxies about to collide and by counting the number of galaxies that appear to be disturbed in various ways. The two techniques are analogous to trying to estimate the number of automobile accidents by counting the number of cars on a collision course versus counting the number of wrecked cars seen by the side of the road.

However, these studies have often led to discrepant results. "These different techniques probe mergers at different 'snapshots' in time along the merger process," Lotz says. "Studies that looked for close pairs of galaxies that appeared ready to collide gave much lower numbers of mergers (5%) than those that searched for galaxies with disturbed shapes, evidence that they're in smashups (25%)."

In the new work, all the previous observations were reanalyzed using a key new ingredient: highly accurate computer simulations of galaxy collisions. These simulations, which include the effects of stellar evolution and dust, show the lengths of time over which close galaxy pairs and various types of galaxy disturbances are likely to be visible. Lotz's team accounted for a broad range of merger possibilities, from a pair of galaxies with equal masses joining together to an interaction between a giant galaxy and a puny one. The team also analyzed the effects of different orbits for the galaxies, possible collision impacts, and how the galaxies were oriented to each other.

The simulations were done by T. J. Cox (now at Carnegie Observatories in Pasadena), Patrik Jonsson (now at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts), and Joel Primack (at the University of California, Santa Cruz -- UCSC), using small supercomputers at UCSC and the large Columbia supercomputer at NASA Ames Research Center. These simulations were "observed" as if through Hubble Space Telescope by Jennifer Lotz in a series of papers with Cox, Jonsson, and Primack that were published over the past three years. A key part of the analysis was a new way of measuring galaxy disturbances that was developed by Lotz, Primack, and Piero Madau in 2004. All this work was begun when Lotz was a postdoc with Primack, and Cox and Jonsson were his graduate students.

"Viewing the simulations was akin to watching a slow-motion car crash," Lotz says. "Having an accurate value for the merger rate is critical because galactic collisions may be a key process that drives galaxy assembly, rapid star formation at early times, and the accretion of gas onto central supermassive black holes at the centers of galaxies."

"The new paper led by Jennifer Lotz for the first time makes sense of all the previous observations, and shows that they are consistent with theoretical expectations," says Primack. "This is a great example of how new astronomical knowledge is now emerging from a combination of observations, theory, and supercomputer simulations." Primack now heads the University of California High-Performance AstroComputing Center (UC-HiPACC), headquartered at the University of California, Santa Cruz.

This research was funded by grants from NASA and NSF, and Hubble Space Telescope and Spitzer Space Telescope Theory Grants

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by University of California - Santa Cruz.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

Lotz, Jennifer M.; Jonsson, Patrik; Cox, T. J.; Croton, Darren; Primack, Joel R.; Somerville, Rachel S.; Stewart, Kyle. The Major and Minor Galaxy Merger Rates at z < 1.5. The Astrophysical Journal, 2011 [link]

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.


View the original article here

ScienceDaily (Oct. 27, 2011) — A new analysis of Hubble surveys, combined with simulations of galaxy interactions, reveals that the merger rate of galaxies over the last 8 billion to 9 billion years falls between the previous estimates.

The galaxy merger rate is one of the fundamental measures of galaxy evolution, yielding clues to how galaxies bulked up over time through encounters with other galaxies. And yet, a huge discrepancy exists over how often galaxies coalesced in the past. Measurements of galaxies in deep-field surveys made by NASA's Hubble Space Telescope generated a broad range of results: anywhere from 5 percent to 25 percent of the galaxies were merging.

The study, led by Jennifer Lotz of the Space Telescope Science Institute in Baltimore, Md., analyzed galaxy interactions at different distances, allowing the astronomers to compare mergers over time. Lotz's team found that galaxies gained quite a bit of mass through collisions with other galaxies. Large galaxies merged with each other on average once over the past 9 billion years. Small galaxies were coalescing with large galaxies more frequently. In one of the first measurements of smashups between dwarf and massive galaxies in the distant universe, Lotz's team found these mergers happened three times more often than encounters between two hefty galaxies.

"Having an accurate value for the merger rate is critical because galactic collisions may be a key process that drives galaxy assembly, rapid star formation at early times, and the accretion of gas onto central supermassive black holes at the centers of galaxies," Lotz explains.

The team's results are accepted for publication appeared in The Astrophysical Journal.

The problem with previous Hubble estimates is that astronomers used different methods to count the mergers.

"These different techniques probe mergers at different 'snapshots' in time along the merger process," Lotz says. "It is a little bit like trying to count car crashes by taking snapshots. If you look for cars on a collision course, you will only see a few of them. If you count up the number of wrecked cars you see afterwards, you will see many more. Studies that looked for close pairs of galaxies that appeared ready to collide gave much lower numbers of mergers than those that searched for galaxies with disturbed shapes, evidence that they're in smashups."

To figure out how many encounters happen over time, Lotz needed to understand how long merging galaxies would look like "wrecks" before they settle down and begin to look like normal galaxies again.

That's why Lotz and her team turned to highly detailed computer simulations to help make sense of the Hubble photographs. The team made simulations of the many possible galaxy collision scenarios and then mapped them to Hubble images of galaxy interactions.

Creating the computer models was a time-consuming process. Lotz's team tried to account for a broad range of merger possibilities, from a pair of galaxies with equal masses joining together to an interaction between a giant galaxy and a puny one. The team also analyzed different orbits for the galaxies, possible collision impacts, and how galaxies were oriented to each other. In all, the group came up with 57 different merger scenarios and studied the mergers from 10 different viewing angles. "Viewing the simulations was akin to watching a slow-motion car crash," Lotz says.

The simulations followed the galaxies for 2 billion to 3 billion years, beginning at the first encounter and continuing until the union was completed, about a billion years later.

"Our simulations offer a realistic picture of mergers between galaxies," Lotz says.

In addition to studying the smashups between giant galaxies, the team also analyzed encounters among puny galaxies. Spotting collisions with small galaxies are difficult because the objects are so dim relative to their larger companions.

"Dwarf galaxies are the most common galaxy in the universe," Lotz says. "They may have contributed to the buildup of large galaxies. In fact, our own Milky Way galaxy had several such mergers with small galaxies in its recent past, which helped to build up the outer regions of its halo. This study provides the first quantitative understanding of how the number of galaxies disturbed by these minor mergers changed with time."

Lotz compared her simulation images with pictures of thousands of galaxies taken from some of Hubble's largest surveys, including the All-Wavelength Extended Groth Strip International Survey (AEGIS), the Cosmological Evolution Survey (COSMOS), and the Great Observatories Origins Deep Survey (GOODS), as well as mergers identified by the DEEP2 survey with the W.M. Keck Observatory in Hawaii. She and other groups had identified about a thousand merger candidates from these surveys but initially found very different merger rates.

"When we applied what we learned from the simulations to the Hubble surveys in our study, we derived much more consistent results," Lotz says.

Her next goal is to analyze galaxies that were interacting around 11 billion years ago, when star formation across the universe peaked, to see if the merger rate rises along with the star formation rate. A link between the two would mean galaxy encounters incite rapid star birth.

In addition to Lotz, the coauthors of the paper include Patrik Jonsson of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass; T. J. Cox of Carnegie Observatories in Pasadena, Calif.; Darren Croton of the Centre for Astrophysics and Supercomputing at Swinburne University of Technology in Hawthorn, Australia; Joel R. Primack of the University of California, Santa Cruz; Rachel S. Somerville of the Space Telescope Science Institute and The Johns Hopkins University in Baltimore, Md.; and Kyle Stewart of NASA's Jet Propulsion Laboratory in Pasadena, Calif.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by NASA/Goddard Space Flight Center.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.


View the original article here